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Investigations of Solid State Properties of Vanadium-Antimony 
Oxide Catalysts 

Although a number of mixed oxides have 
been developed as catalysts for the oxida- 
tion of hydrocarbons, surprisingly few de- 
tails of the fundamental chemical and struc- 
tural properties of many of these materials 
have been established (I ). Vanadium-anti- 
mony oxides appear to fall within such a 
category since, despite their catalytic prop- 
erties (2-5), the vanadium-antimony-oxy- 
gen system has been subjected to only lim- 
ited examination (6-11) with the nature of a 
compound corresponding to the name “va- 
nadium antimonate” of formula “VSbOd” 
having been the matter of some uncertainty 
(6-9, 11). However, during our recent in- 
vestigations of the solid state reaction be- 
tween vanadium(V) oxide and antimo- 
ny(II1) oxide we have shown (12, 13) that 
the course of the reaction and the nature of 
the rutile-type vanadium antimonate phase 
is critically dependent on the reaction con- 
ditions and the presence of oxygen. The 
results showed that a single-phase homoge- 
neously oxidised material, VI-ySbl-y04 (0 
< y < 0. I), is formed in air whilst a biphasic 
product containing antimony-deficient va- 
nadium antimonate, VSbl-,04-s (0 < y < 
0. l), and antimony tetroxide is produced in 
commercial nitrogen, and that a monopha- 
sic material, VSbi-,04-~, (0 < y < O.l), is 
formed only under strictly oxygen-free con- 
ditions. We have also investigated (14) the 
structural properties of some of these 
phases, the changes induced by thermoly- 
sis, and the relationships between the vari- 
ous components in the system. 

We report here on some subsequent in- 
vestigations of vanadium-antimony oxides 
prepared according to methods described in 
the patent literature (2). A suspension of 
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powdered antimony metal (24.6 g) was 
boiled in stirred concentrated (69-71%) ni- 
tric acid (118 cm3), cooled, and added to 
ammonium metavanadate (9.2 g) in 1% hy- 
drochloric acid. The mixture was evapo- 
rated, the residue dried (lSoOC, 16 h) in air, 
and finally calcined at 650 or 820°C (Table 
1). Materials to be used as catalysts were 
wetted with ethanol and supported on glass 
beads. The catalysts were packed to a 
depth of 10 cm within a quartz-glass micro- 
reactor of 5 mm internal diameter, dried 
(70°C 12 h) in air, supported in a Carbolite 
oven, and treated at 400 or 450°C with a 
flowing gaseous mixture (by volume) of 4% 
propene, 20% oxygen, and 76% nitrogen. 
The products were analysed with a Pye-Un- 
icam 104 gas-liquid chromatograph fitted 
with a flame ionisation detector. Powder X- 
ray diffraction data were recorded with a 
Philips vertical goniometer (PW 1050/70) 
using Cuba! radiation. ESR spectra were 
recorded at 298 K with a Hilger and Watts 
instrument operating at 9.4 GHz. Scanning 
electron microscopy was performed with a 
Cambridge S4 Stereoscan instrument and 
electron probe microanalysis recorded with 
an energy dispersive X-ray detector inter- 
faced with the Stereoscan microscope. 

Analysis of the X-ray diffraction patterns 
showed the unused catalysts to be biphasic 
materials containing vanadium antimonate 
and antimony tetroxide (Table 1). The for- 
mation of a discrete antimony oxide phase 
reflects the presence of excess antimony in 
the catalyst preparation. The sharper peaks 
in the X-ray diffraction patterns of the 
products formed at 820°C is indicative of 
the enhanced crystallinity of the catalysts 
prepared at higher temperature. 
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TABLE 1 

Phase Compositions of Vanadium-Antimony Oxide 
Catalysts 

Catalyst Thermal 
treatment 

Phase composition 

A 65O”C/air/8 h Vanadium antimonate 
and ca. 11% aSbZ04 

B 

Ii) 

(iii) 

82OWairl4 h 
8 h /3-Sb204 and ca. 35-25% 

vanadium antimonate 
24 h 

The appearance of the @-modification of 
antimony tetroxide in the catalyst produced 
at 820°C is consistent with the formation 
(12, 23) of this polymorph at a similarly un- 
usually low temperature during the prepa- 
ration of vanadium antimonate from anti- 
mony(II1) oxide and vanadium(V) oxide. 
The material was subsequently described 
(24) as a solid solution of ca. 5% vanadium 
in P-SbzOd and its low temperature stabili- 
sation associated with the presence of in- 
corporated vanadium. The larger concen- 
tration of the antimony tetroxide phase in 
the catalyst prepared at 820°C as compared 
with that formed at 650°C is consistent with 
the partial decomposition of vanadium anti- 
monate into “jMb20.+” which occurs (14) 
at temperatures exceeding 800°C. It is clear 
therefore that vanadium antimonate cata- 
lysts prepared at the different temperatures 
reported in the patent literature (2) have 
distinctly different phase compositions 
which reflect the influence of thermal con- 
ditions on the formation and stability of 
phases in the vanadium-antimony-oxygen 
system. 

The X-ray diffraction data for the vana- 
dium antimonate phases were indexed ac- 
cording to a tetragonal unit cell and were 
characteristic of rutile-type solids with unit 
cell parameters (Table 2) similar to those 
reported (II, 13) for oxidised vanadium an- 
timonate, Vi-$bi-,,04. The ESR spectrum 
recorded from the catalyst prepared at 
650°C was similar to that attributed to vana- 
dium(IV) in oxidised vanadium antimonate 

(25) and other materials which contain 
vanadium(IV) (16, 17). The ESR spectra 
recorded from the catalysts prepared at 
820°C showed broader signals which were 
more similar to those of vanadium(IV) in 
vanadium(IV) oxide and the compound 
VOSb204. Since X-ray diffraction failed to 
provide evidence for the existence of any 
reduced vanadium oxide phases in the va- 
nadium-antimony oxide catalysts and ESR 
failed to detect vanadium(IV) in the vana- 
dium-containing “/3-Sb204”, it seems that 
the X-ray diffraction data and ESR spectra 
recorded from the biphasic catalysts are 
consistent with the presence of oxidised va- 
nadium antimonate. Given the presence of 
antimony(V) in the i-utile-type phase (II), 
the oxidised vanadium antimonate which is 
formed in the catalysts may be described by 
the formulation (II, 15) V(III),-,V(IV), 
Sb(V)i-,04. Hence the catalysts, although 
biphasic, are not analogous to other bipha- 
sic products which have been identified 
(13) in the vanadium-antimony-oxygen 
system during investigations of reactions 
between antimony(II1) oxide and vana- 
dium(V) oxide in commercial nitrogen and 
which contain the nonstoichiometric rutile- 
type phase of composition VSbl-y04-S 
which does not contain vanadium(IV) (IS). 
In this respect it is pertinent to record that a 
vanadium-antimony oxide prepared ac- 
cording to the patent literature but calcined 
in nitrogen gave a biphasic product contain- 
ing vanadium antimonate and ca. 30% (Y- 
Sb204 which failed to give an ESR spectrum 
characteristic of vanadium(IV) in oxidised 
vanadium antimonate. The lattice parame- 
ters of the t-utile-type phase in this catalyst 

TABLE 2 

Unit Cell Parameters (A) of Vanadium Antimonate 
Phases in Vanadium-Antimony Oxide Catalysts 

Catalyst Cl=b c 

A 4.64 f 0.01 3.03 f 0.01 
B 

(9 4.60 f 0.02 3.04 r 0.01 
(ii) 4.60 2 0.01 3.05 t 0.02 
(iii) 4.61 +- 0.01 3.06 * 0.02 
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prepared in nitrogen a = b = 4.58 k 0.01 A, 
c = 3.07 f 0.02 A were more similar to 
those of the vanadium antimonate of com- 
position VSbl-y04-S. The results suggest 
that the nature of the vanadium antimonate 
in a material prepared according to the pat- 
ent literature but heated in nitrogen is more 
similar to the product obtained by calcina- 
tion of antimony(II1) oxide and vana- 
dium(V) oxide under similar anaerobic con- 
ditions than to the catalyst prepared by 
calcination in air. Hence the composition of 
the vanadium antimonate phase in the cata- 
lyst appears to be critically dependent on 
the gaseous environment in which the cata- 
lyst is calcined. 

Examination of the vanadium-antimony 
oxide catalysts prepared at 820°C by scan- 
ning electron microscopy and electron 
probe microanalysis revealed the presence 
of large hexagonal “/3-Sb204” plate-type 
crystals containing some vanadium (Fig. l), 
similar to those described (14) as solid solu- 

tions of ca. 5% vanadium in @-Sb204, to- 
gether with a considerable quantity of nee- 
dle-shaped crystals similar to those 
previously identified as vanadium antimo- 
nate (14). Thus the morphology of the cata- 
lyst formed at high temperature also resem- 
bles that of materials prepared from solid 
state reactions between antimony(II1) ox- 
ide and small quantities of vanadium(V) ox- 
ide at similar temperatures (14). 

The X-ray diffraction patterns recorded 
from catalysts prepared at 650°C and subse- 
quently treated at 400 and 450°C in the pro- 
pene-oxygen-nitrogen gas stream were 
similar to those obtained from the unused 
materials except for the appearance of a 
small quantity of P-Sb204. Analogous 
changes were observed when the catalyst 
prepared in nitrogen was exposed to the ox- 
ygen-propene-nitrogen gas stream at 
400°C. Similar changes have been reported 
(18) to occur in a catalyst composed of iron 
antimonate and /3-Sb204 when used for the 

FIG. 1. Vanadium-antimony oxide catalyst, calcined at 820°C for 24 h in air. Magnification: 1900. 
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oxidation of propene in the absence of oxy- 
gen and have been associated (18) with the 
reduction of the Wile-type iron antimonate 
phase. In this respect it is relevant that, fol- 
lowing its use in the catalytic reaction, the 
vanadium-antimony oxide catalyst con- 
taining oxidised vanadium antimonate gave 
an ESR spectrum showing a diminution of 
the vanadium(IV) signal and similar to that 
recorded when the catalyst was reduced in 
hydrogen at 300°C. The results are there- 
fore consistent with the reduction of the 
catalyst during the catalytic reaction and, 
more specifically, with the reduction of 
vanadium(IV) in the oxidised vanadium an- 
timonate phase. 

The vanadium-antimony oxide catalyst 
calcined at 820°C for 24 h gave, after treat- 
ment in the propene-oxygen-nitrogen gas 
stream, X-ray diffraction patterns in which 
no discernable changes could be identified. 
Given the presence of P-Sb204 as the major 
component of this catalyst it is not unrea- 

sonable that any small scale transformation 
of the rutile-type phase to P-Sb204, as ob- 
served after exposure of the catalyst 
formed at low temperature to the catalytic 
reaction, would be undetected by this tech- 
nique. Indeed, scanning electron micros- 
copy and electron probe microanalysis also 
showed that the catalyst prepared at 820°C 
was unchanged during the catalytic process 
(Fig. 2). A similar resistance to change was 
observed when the catalyst was treated 
with hydrogen at 300°C. However, exami- 
nation by ESR showed the signal character- 
istic of vanadium(IV) in the oxidised vana- 
dium antimonate component of the biphasic 
catalyst formed at 820°C to be lost when the 
catalyst was treated in the propene-oxy- 
gen-nitrogen gas stream and in hydrogen. 
The results are similar to those recorded 
from the catalyst formed at low tempera- 
ture and are consistent with the reduction 
of the i-utile-type phase during the catalytic 
reaction. 

FIG. 2. Vanadium-antimony oxide catalyst, calcined at 820°C for 24 h in air, following treatment 
with propene-oxygen-nitrogen at 400°C. Magnification: 1900. 
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It seems therefore that the biphasic vana- 
dium-antimony oxide catalysts formed at 
both low and high temperatures suffer re- 
duction during the catalytic reaction which 
is mainly associated with the reduction of 
the oxidised vanadium antimonate phase. 
The results are quite consistent with the in- 
volvement of oxygen from the lattice of the 
vanadium antimonate phase during the oxi- 
dation reaction as envisaged (I) to occur 
when other mixed oxide catalysts have 
been used for the selective oxidation of hy- 
drocarbons. In this respect it is also rele- 
vant to record that both oxidised vanadium 
antimonate, prepared by methods de- 
scribed previously (13), and the catalyst 
prepared at 650°C during the work reported 
here, lost weight (ca. 3.5%) when heated at 
750°C for 24 h in nitrogen and gave ESR 
spectra showing the loss of vanadium(IV). 
These results are also consistent with re- 
duction of the oxidised vanadium antimo- 
nate phase and are compatible with its po- 
tential properties as an oxidation catalyst. 

showed inferior selectivity at 450°C. Hence 
it would seem that the presence of the ox- 
idised vanadium antimonate phase, 
VI-ySbi-y04, containing vanadium(IV) 
which is formed in the biphasic catalysts 
prepared according to the patent literature 
is also significant in determining the nature 
of the products from the catalytic reaction. 
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